Identification of poly (ADP-ribose) polymerase-1 (PARP-1) as a novel Kruppel-like factor 8-interacting and -regulating protein.
نویسندگان
چکیده
Krüppel-like factor 8 (KLF8) regulates critical gene transcription and cellular events associated with cancer. However, KLF8-interacting proteins remain largely unidentified. Using co-immunoprecipitation (co-IP), mass spectrometry, and GST pulldown assays, we identified poly(ADP-ribose) polymerase-1 (PARP-1) as a novel KLF8-interacting protein. Co-IP and Western blotting indicated that KLF8 is also a PARP-1 substrate. Mutation of the cysteines in the zinc finger domain of KLF8 abolished PARP-1 interaction. Surprisingly, immunofluorescent staining revealed a cytoplasmic mislocalization of KLF8 in PARP-1(-/-) cells or when the interaction was disrupted. This mislocalization was prevented by either PARP-1 re-expression or inhibition of CRM1-dependent nuclear export. Interestingly, co-IP indicated competition between PARP-1 and CRM1 for KLF8 binding. Cycloheximide chase assay showed a decrease in the half-life of KLF8 protein when PARP-1 expression was suppressed or KLF8-PARP-1 interaction was disrupted. Ubiquitination assays implicated KLF8 as a target of ubiquitination that was significantly higher in PARP-1(-/-) cells. Promoter reporter assays and chromatin immunoprecipitation assays showed that KLF8 activation on the cyclin D1 promoter was markedly reduced when PARP-1 was deleted or inhibited or when KLF8-PARP-1 interaction was disrupted. Overall, this work has identified PARP-1 as a novel KLF8-binding and -regulating protein and provided new insights into the mechanisms underlying the regulation of KLF8 nuclear localization, stability, and functions.
منابع مشابه
The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1 and the heterochromatin protein HP1
Recent advances reveal emerging unique functions of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in heterochromatin integrity and cell differentiation. However, the chromatin-mediated molecular and cellular events involved remain elusive. Here we describe specific physical and functional interactions of Parp-1 and Parp-2 with the transcriptional intermediary factor (TIF1 ) and the heteroch...
متن کاملRegulation of NFAT by poly(ADP-ribose) polymerase activity in T cells.
The nuclear factor of activated T cells (NFAT) family of transcription factors is pivotal for T lymphocyte functionality. All relevant NFAT activation events upon T cells stimulation such as nuclear translocation, DNA binding, and transcriptional activity have been shown to be dictated by its phosphorylation state. Here, we provide evidence for a novel post-translational modification that regul...
متن کاملPoly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase.
Single-strand breaks are the commonest lesions arising in cells, and defects in their repair are implicated in neurodegenerative disease. One of the earliest events during single-strand break repair (SSBR) is the rapid synthesis of poly(ADP-ribose) (PAR) by poly(ADP-ribose) polymerase (PARP), followed by its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). While the synthesis of pol...
متن کاملThe therapeutic potential of poly(ADP-ribose) polymerase inhibitors.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a member of the PARP enzyme family consisting of PARP-1 and several recently identified novel poly(ADP-ribosylating) enzymes. PARP-1 is an abundant nuclear protein functioning as a DNA nick-sensor enzyme. Upon binding to DNA breaks, activated PARP cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins i...
متن کاملIdentification of Poly(ADP-Ribose) Polymerase-1 as a Cell Cycle Regulator through Modulating Sp1 Mediated Transcription in Human Hepatoma Cells
The transcription factor Sp1 is implicated in the activation of G0/G1 phase genes. Modulation of Sp1 transcription activities may affect G1-S checkpoint, resulting in changes in cell proliferation. In this study, our results demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP-1) promoted cell proliferation by inhibiting Sp1 signaling pathway. Cell proliferation and cell cycle assays...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 286 23 شماره
صفحات -
تاریخ انتشار 2011